Algebra 2

11-01B Defining and Using Series

Series

_____ of a sequence

2, 4, 6, 8, ... -> ______

Summation Notation (Sigma Notation)

Finite

 $2+4+6+8 = \sum_{i=1}^{4} 2i$ $2+4+6+8+\dots = \sum_{i=1}^{\infty} 2i$

Infinite

Write as a summation

 $4 + 8 + 12 + \cdots + 100$

7 + 10 + 13 + 16 + 19

Find the sum of the series

$$\sum_{k=5}^{10} k^2 + 1$$

$$\sum_{i=2}^{3} \frac{2}{i}$$

Some shortcut formulas

$$\sum_{i=1}^{n} 1 = n$$

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

$$\sum_{i=1}^{n} i^{2} = \frac{n(n+1)(2n+1)}{6}$$

Algebra 2 11-01B	Name:

Find the sum of the series	
$\sum_{k=1}^{10} 3k^2 + 2$	
$\sum 3k^2 + 2$	
k=1	
25	
$\sum_{i=1}^{25} i$	
$\sum_{i=10}$	

600 #25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 47, 63, 65, 67, 69 = 15